立場新聞 Stand News

突擊測驗悖論 (The Surprise test paradox)

2015/10/29 — 15:22

ccarlstead / flickr

ccarlstead / flickr

突擊測驗是很多學生的惡夢;但大家有無想過它可能蘊涵矛盾?

設想某天課堂,老師宣佈下星期的某個上課日(星期一至星期五)舉行測驗,而且大家預料不到這個測驗將在哪一天舉行。

有個學生阿捷聽到這宣佈後,卻試圖預測哪一天會舉行這場測驗。有趣的是,阿捷根據老師的宣佈內容,推論出驚奇的結論:「下星期不可能舉行這場測驗。」

廣告

阿捷的推論如下:

  1. 如果這場測驗在星期五舉行,那麼在前一天晚上,亦即是星期四,我可以預料到星期五會舉行。但根據老師的宣佈,這個測驗是我預料不到在哪一天舉行,於是形成矛盾,因此這場測驗不可能是在星期五舉行。(這推論形式為歸謬法)
  2. 不是星期五,這場測驗會否在星期四舉行呢?如果這場測驗是在星期四舉行,也就是星期一至星期三並沒有舉行這場測驗,那在星期三晚上,我將預料到這場測驗或是在星期四舉行,或是在星期五舉行。但根據上述的推論 (1) ,這場測驗不可能在星期五舉行,所以在星期三晚上,我將預料到這場測驗會在星期四舉行。但根據老師的宣佈,這個測驗是我預料不到在哪一天舉行,於是形成矛盾,因此這場測驗不可能在星期四舉行。
  3. 根據上述的推論 (1) 和 (2) ,我已排除星期四與星期五舉行測驗的可能。因此,這場考試只可能在星期一至星期三的其中一天舉行。然而,根據上述同樣的推論步驟,測驗都不會在星期三、星期二舉行。最後,只剩下星期一有可能舉行這場測驗。但如果只剩下星期一有可能舉行這場測驗,即我現在已預料到它會在星期一舉行,所以這場測驗也不會在星期一舉行。最後,由於這場測驗在下星期哪一天舉行,我都會預料得到。所以這場預料不到的測驗不可能舉行。

現在問題出現了。到底老師能否實現他的宣佈呢?我們似乎有兩種互相矛盾的結論:如果根據阿捷的推論,那麼老師不可能舉行這場預料不到的測驗。但另一方面,常識卻告訴我們,老師當然可能舉行這場預料不到的測驗。因此,悖論 (Paradox) 就出現了:阿捷的推論看起來正確無誤,卻推論出荒謬的結論。

廣告

面對這個悖論,也許有人認為,預料不到的測驗當然可能在下星期的其中一天舉行。所以,如果阿捷推論出下星期不可能有這場測驗,那麼阿捷應該不要相信老師的宣佈,那就沒有理由根據老師的宣佈作出推論。悖論應該取消。

不過,這種方案似乎悖理。因為根據常識,預料不到的測驗明顯有可能在下星期舉行,老師的宣佈並無問題。令我們造成困惑的是,阿捷得出違反常識的結論,但推論卻看起來正確無誤。既然我們不承認阿捷的結論,自然需要找出阿捷的推論到底在哪裡出了問題,而不是根據阿捷的結論,否定這個悖論的前設。

我們應該如何處理這個悖論?不同學者有不同的回應。有些學者視老師和學生為互相博弈的狀態,使用博弈論 (Game theory) 作出回應;有些學者視悖論為自我指涉悖論的一種,用邏輯觀點消解 (resolve) 悖論;有些學者則使用哥德爾數處理這個悖論。

不過,在當代不少哲學家視它為知識論的一種悖論。他們主張「一個測驗是大家預料不到」的意思是「大家無法預先知道這測驗在哪一天舉行」、學生的整個推論過程中涉及到自己的認知狀態,因此,它是與知識論概念相關的悖論。

原刊於博客《正心誠意

發表意見